Briefing

  • Cheat-proof random numbers generated from quantum entanglement

    Nature, Published online: 11 June 2025; doi:10.1038/d41586-025-01451-y

    A quantum random-number generator has been developed that uses classical cryptography to certify that its output was produced by a quantum process.

  • ‘Smart’ dental implants could feel more like the real thing

    A woman in a red shirt takes a big bite of a white ice cream bar while standing in front of a blue wall.

    Researchers are developing “smart” dental implants that would provide a more natural feel while chewing or talking.

    Each year, millions of people in the US get dental implants as a long-term, natural-looking fix for missing teeth. But traditional implants don’t fully mimic real teeth.

    Researchers recently described a new approach to dental implants that that could better replicate how natural teeth feel and function.

    Their study in Scientific Reports shows early success with both a “smart” implant and a new gentler surgical technique in rodents.

    “Natural teeth connect to the jawbone through soft tissue rich in nerves, which help sense pressure and texture and guide how we chew and speak. Implants lack that sensory feedback,” says Jake Jinkun Chen, a professor of periodontology and director of the Division of Oral Biology at the Tufts University School of Dental Medicine and the senior author on the study.

    Traditional dental implants use a titanium post that fuses directly to the jawbone to support a ceramic crown, and the surgery often cuts or damages nearby nerves. To tie these inert pieces of metal into the body’s sensory system, the researchers developed an implant wrapped in an innovative biodegradable coating.

    This coating contains stem cells and a special protein that helps them multiply and turn into nerve tissue. As the coating dissolves during the healing process, it releases the stem cells and protein, fueling the growth of new nerve tissue around the implant.

    The coating also contains tiny, rubbery particles that act like memory foam. Compressed so that the implant is smaller than the missing tooth when it’s first inserted, these nanofibers gently expand once in place until the implant snugly fits the socket. This allows for a new minimally invasive procedure that preserves existing nerve endings in the tissue around the implant.

    “This new implant and minimally invasive technique should help reconnect nerves, allowing the implant to ‘talk’ to the brain much like a real tooth,” explains Chen.

    “This breakthrough also could transform other types of bone implants, like those used in hip replacements or fracture repair.”

    Six weeks after surgery, the implants stayed firmly in place in rats, with no signs of inflammation or rejection.

    “Imaging revealed a distinct space between the implant and the bone, suggesting that the implant had been integrated through soft tissue rather than the traditional fusion with the bone,” says Chen. This may restore the nerves around it.

    These initial results are promising, but it will take more studies and time—for example, research in larger animal models to look at outcomes, including safety and efficacy—before trials can begin in human volunteers.

    The researchers’ next step will be a preclinical study to see if brain activity confirms that the new nerves surrounding the prototype implant indeed relay sensory information.

    Source: Tufts University

    The post ‘Smart’ dental implants could feel more like the real thing appeared first on Futurity.

  • James Webb Space Telescope sees 1st exoplanet raining sand alongside 'sandcastle' partner world

    In two related firsts, the James Webb Space Telescope has discovered sand-filled rains on a distant exoplanet as its “sandcastle” partner world forms from sandy matter before the eyes of astronomers.

  • Watch June's full Strawberry Moon skim the southern horizon with these free livestreams tonight

    This month’s full Strawberry Moon rides low across the southern sky via livestream on June 11.

  • 'Uranus is weird.' Big moons of tilted ice giant hide a magnetic mystery, Hubble telescope reveals

    Scientists find surprising evidence that space dust is shaping the surfaces of Uranus’ largest moons.

  • Lego Dune Atreides Royal Ornithopter review

    Grab a Lego set worthy of the Lisan al Gaib with the Lego Dune Ornithopter.

  • New Map Shows How Gun Deaths of Children Have Increased in States with Loose Firearm Laws

    Gun violence is the leading cause of death of children in the U.S.—and states with loose gun control laws bear the heaviest burden, a new study found

  • Charting a Path from Fire Features to Health Outcomes

    A burned-down house has only a frame and a chimney remaining. A few burned trees surround the house, and the Sun is rising or setting in a smoky red sky.
    Source: GeoHealth

    Wildfires are creeping into urban environments with alarming frequency, and they are connected to health problems ranging from respiratory illnesses to hypertension to anxiety. Studying the links between wildfires in these areas and health is challenging because wildfire smoke and ash contain a mix of chemicals from buildings, cars, and electronics, leaving researchers and communities with many unanswered questions.

    Barkoski et al. recently published the GeoHealth Framework for Wildland Urban Interface Fires to help researchers quickly visualize the relationships between urban wildfires and health outcomes, as well as identify data gaps and future research priorities. It also aims to improve the coordination among different groups working to support wildfire preparedness, response, and recovery. The researchers built the framework using the example of the 2020 Walbridge Fire, which burned more than 55,000 acres (about 22,258 hectares) in Sonoma County, California. This example helped them understand the types of geoscience and health data that are available and that are needed after a wildland-urban interface fire.

    To apply the framework, users define a question and then map various wildfire and health factors and the ways they are connected. For example, they may select environmental factors preceding a specific fire, such as land use and recent weather patterns; characteristics of the fire, including its size and the kinds of materials it burned; and factors that influenced its spread, such as firefighter response, wind, and topography. The team suggests pulling data from sources such as the U.S. Geological Survey, NASA, NOAA, EPA, electronic health records, and public surveys.

    These inputs and the known and hypothesized connections among them help users to identify which pollutants a fire may generate, how humans may encounter these pollutants (such as through the air or drinking water), and how these encounters may affect the likelihood of physical or mental health consequences.

    The researchers also note that the framework can be expanded and adapted to apply to new research questions. For instance, if researchers want to better understand how wildfire exposure affects the biological mechanisms of disease, they could incorporate epidemiological, toxicological, and clinical research studies into the framework. These studies might include more detailed information about how wildfire smoke harms health, such as gene variants that predispose people to asthma. (GeoHealth, https://doi.org/10.1029/2025GH001380, 2025)

    —Saima May Sidik (@saimamay.bsky.social), Science Writer

    A photo of a telescope array appears in a circle over a field of blue along with the Eos logo and the following text: Support Eos’s mission to broadly share science news and research. Below the text is a darker blue button that reads “donate today.”
    Citation: Sidik, S. M. (2025), Charting a path from fire features to health outcomes, Eos, 106, https://doi.org/10.1029/2025EO250214. Published on 5 June 2025.
    Text © 2025. AGU. CC BY-NC-ND 3.0
    Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.
  • Two Neutron-Monitoring Networks Are Better Than One

    Pink aurorae illuminate the starry night sky above a stand of trees.

    On 10–11 May 2024, the strongest solar storm since 2003 hit Earth. The storm caused spectacular aurorae around the world, including as far south as Kansas in the midwestern United States. Unfortunately, it also had negative effects, such as days-long disruptions in GPS signals needed by farm tractors that, in turn, caused delays in planting operations at a critical time in the spring.

    Solar storms, which throw torrents of protons, neutrons, and other particles at our planet, have had severe effects in decades past. A massive storm in May 1967, for example, significantly disrupted military communications (and ultimately led the United States to strengthen its space weather capacity) [Knipp et al., 2016]. Another, in March 1989, disabled power grids, hitting Quebec, Canada, especially hard [Boteler, 2019].

    The biggest recorded modern event took place in February 1956. Were it to be repeated today, such an event could disrupt aircraft electronics and expose passengers to substantially elevated radiation doses.

    The largest known solar event in history, 50–100 times larger than the one that happened in 1956, occurred in 774 CE [Miyake et al., 2012]. An event on par with the 774 storm is considered a worst-case scenario for modern aviation [Mishev et al., 2023].

    With the 11-year solar cycle approaching its maximum in 2025, we are in a time of heightened potential for such events to disrupt daily life.

    Fortunately, technology for observing solar storms and the particle showers they rain down on Earth has developed significantly over the past several decades. Both ground-based and satellite observations are critical for measuring solar storms and their effects [National Academies of Sciences, Engineering, and Medicine, 2024] and for generating space weather forecasts (e.g., by NOAA’s Space Weather Prediction Center (SWPC)). The global aviation sector, for example, uses these forecasts to predict solar radiation storm warning levels and radiation dosage levels to help keep flights safe.

    The small number of high-energy neutron monitoring stations used to observe the effects of solar events at Earth’s surface limits data availability and thus the accuracy and spatial resolution of forecasts.

    Good predictions rely on the availability of high-quality and comprehensive data. However, the small number of high-energy neutron monitoring stations currently used to observe the effects of solar events at Earth’s surface limits data availability and thus the accuracy and spatial resolution of forecasts. But solutions are within reach.

    In addition to space weather scientists, hydrologists use data from these monitoring stations, albeit for a different purpose: They rely on the high-energy neutron detections to calibrate the low-energy neutron detectors they use as one way to collect snow cover and soil moisture measurements that are important for hydrological modeling and agricultural applications. Recent studies showed that the larger networks of low-energy neutron detectors used by hydrologists can supplement and effectively increase the coverage of the smaller network of high-energy neutron monitors [Baird, 2024]. Now, scientists are devising a strategy to combine forces for their mutual benefit.

    Wanted: Better Observational Capabilities

    Massive lead-lined neutron monitors (NMs) are typically used to monitor the arrival of cosmic ray particles at Earth’s surface. These particles include high-energy secondary neutrons (carrying energies of ~50–100 megaelectron volts) that are generated by collisions of primary solar and galactic cosmic rays with other particles in the atmosphere, a process that can be reconstructed using NM data and numerical models [Mishev et al., 2014].

    Scientific monitoring equipment sits inside a well-lit Quonset hut.
    This 18-tube neutron monitor is housed in a Quonset hut on the campus of the University of New Hampshire in Durham. Credit: James Ryan, University of New Hampshire

    Satellites, including those in the GOES (Geostationary Operational Environmental Satellite) system, also provide operational data about primary cosmic rays in real time, but they cannot resolve particle energies in the detail required for estimating radiation doses affecting aviation or for modeling solar particle energy spectra [National Academies of Sciences, Engineering, and Medicine, 2024].

    A global network of NMs, each run by different universities or other entities, has been in operation for the past 7 decades [Väisänen et al., 2021]. Unfortunately, today, only 20 NM sites around the globe provide real-time data; another roughly 30 NMs have been shut down because of a lack of long-term funding to maintain them. Geopolitical factors and closed data policies in some parts of the world additionally limit data quality and access internationally.

    The U.S. Senate’s 2020 Space Weather Research and Forecasting Act emphasized the need for better observational capabilities to address this crisis of critical infrastructure. The 2020 PROSWIFT Act and the most recent National Academies’ solar and space physics decadal survey [National Academies of Sciences, Engineering, and Medicine, 2024] further underscored the challenges and need for supporting long-term operational NM networks.

    Hydrologists Have Their Own Networks

    Hydrologists have, in the past 15 years, deployed networks of detectors similar to neutron monitors (NMs) to measure snow and soil moisture.

    Applying methods developed beginning several decades ago [e.g., Kodama et al., 1979], hydrologists have, in the past 15 years, deployed networks of detectors similar to NMs to measure snow and soil moisture [Zreda et al., 2012]. These cosmic ray neutron sensors (CRNSs) are, however, much smaller than NMs, and they are sensitive to much lower neutron energies (~0.025 to 100 kiloelectron volts).

    At these lower energies, the number of detected neutrons depends not only on incoming secondary cosmic rays but also on the abundance of hydrogen in the surrounding environment (e.g., in the form of snow or soil moisture). In soil, for example, cosmic ray neutrons collide with hydrogen atoms, lose energy in the process, and become thermalized (i.e., they slow down). CRNSs are designed to count these water-sensitive neutrons.

    The sensors can measure these low-energy neutrons within a roughly 20-hectare circular area and up to about 30 centimeters above the ground surface, an extraordinarily large volume relative to their size. Figure 1 shows how example CRNS measurements of neutron counts and soil water content from central Nebraska clearly respond to rainfall, as measured by the local Mesonet station, and match potential evapotranspiration data well.

    Four-panel data plot showing neutron counts (top left) and estimates of soil water content (bottom left) from 4 April to 2 May 2021 from central Nebraska, as well as rainfall data (top right) and potential evapotranspiration data (bottom right) over the same period.
    Fig. 1. Neutron counts (corrected for variations in air pressure, water vapor, and high-energy neutron intensity, top left) and estimates of soil water content (bottom left) from 4 April to 2 May 2021 collected from a cosmic ray neutron sensor (CRNS) in central Nebraska are shown. Rainfall data from a local Nebraska Mesonet station (top right) and potential evapotranspiration (ET) data (bottom right) over the same period match the soil water content changes measured by the CRNS.

    Area-averaged estimates of snow and soil moisture like this match scales relevant for hydrological modeling and agricultural management (e.g., irrigation and fertilizer application, crop yield prediction), providing a big advantage compared with estimates from point-scale measurements, given the high spatial variability that naturally exists from one meter to another. CRNS detectors offer other benefits as well. Their measurements, collected roughly hourly, are nondestructive; they have extremely low maintenance costs; and they can be deployed outdoors for long-term environmental monitoring.

    Today, more than 300 CRNS instruments are operating across all seven continents, with networks in Australia, China, Europe, India, South Africa, the United Kingdom, and the United States. These networks have led to exciting advances in hydrology.

    Two graduate students stand in an agricultural field beside scientific monitoring instrumentation topped with solar panels.
    A CRNS measures soil moisture and snow water equivalent at a study site in eastern Nebraska. Graduate students Sophia Becker and Tanessa Morris are collecting soil samples for calibration. Credit: Trenton Franz, University of Nebraska–Lincoln

    For example, CRNSs have been shown to be excellent sources of ground validation data for remote sensing soil moisture data products like SMAP (Soil Moisture Active Passive) and SMOS (Soil Moisture and Ocean Salinity) that support weather and agricultural forecasting efforts, among other applications [Montzka et al., 2017]. CRNS data have also been shown to significantly improve predictions of streamflow by catchment models by improving estimates of near-surface water storage [Dimitrova-Petrova et al., 2020]. Mobile CRNSs have also been deployed on commuter trains in Europe, providing soil moisture and snow observations across unprecedented scales [Schrön et al., 2021].

    Despite their clear utility, CRNS networks, like the global NM network, often lack long-term funding. Moreover, in the United States, no single federal agency is mandated to monitor soil moisture, a void that hinders the development of a national coordinated soil moisture monitoring network.

    An Exciting Opportunity

    The CRNS research community has been highly dependent on the NM network because real-time reference data are required to correct CRNS measurements for variations in incoming cosmic radiation. In a recent advance bridging the two neutron monitoring communities, Baird [2024] showed that potential benefits also extend in the other direction.

    He used 50 CRNS stations in the United Kingdom to investigate whether they can inform space weather monitoring, concluding that they “can identify persistent space weather periodicities, transient space weather periodicities, and transient aperiodic space weather signals” and that these capabilities are “largely unaffected by the influence of soil moisture in the data.” Although these identifications are not as reliable as those from neutron monitors, the much larger number of CRNSs compared with NMs offers promise for expanding data collection.

    Baird also found that the CRNS data recorded some medium to large solar events, such as Forbush decreases (FDs), which are decreases in galactic cosmic rays reaching Earth following solar coronal mass ejections. The CRNSs detected 4 out of 28 FDs that had been identified by NMs between 2014 and 2022.

    An exciting opportunity exists to use cosmic ray neutron sensor (CRNS) networks globally to augment the roughly 20-station NM network.

    CRNS data have also been used to simulate ground level enhancements (GLEs) of radiation levels at Earth’s surface caused by bombardments of intense solar cosmic rays. These emitted particles, primarily protons, are accelerated to high energies during solar flares or coronal mass ejections. GLEs are rarer than FDs, occurring once per year on average, but are more detrimental to humans and aviation. GLEs are also nearly impossible to predict and prepare for because they arrive at Earth only minutes after a solar flare or coronal mass ejection occurs, whereas FDs take several days to arrive.

    Given the newfound connection between low-energy neutron observations and space weather phenomena, an exciting opportunity exists to use CRNS networks globally to augment the roughly 20-station NM network. This ability would offer an unprecedented number of ground monitors to help researchers understand and analyze larger FD and GLE events and their impacts all around Earth.

    Two Communities Join Forces

    The hydrology and space weather communities have worked together informally since the 2010 launch of the Cosmic-Ray Soil Moisture Observing System in the United States [Zreda et al., 2012]. But the need for additional collaboration has been identified in the literature and during joint sessions at AGU and European Geoscience Union meetings.

    In response to this increased interest, the first Coordinated Cosmic-Ray Observation System Conference was held in October 2024 at the University of Nebraska–Lincoln. The hybrid event gathered 50 experts from academia, government, and industry to explore both the scientific potential of ground-based neutron monitoring across energy spectra and opportunities for productive cross-disciplinary partnerships.

    Conference participants produced a concept paper identifying key issues on which the participating communities can work together. These issues involve critical needs for improved infrastructure and enhanced data accessibility.

    Documenting soil moisture conditions more comprehensively and meeting data needs for environmental modeling and operational products, for example, require the deployment of additional CRNS stations globally—ideally, 30 stations per 1 million square kilometers. In the United States, this level of coverage equates to about 250 stations spread across the country’s roughly 8 million square kilometers.

    With respect to space weather, NOAA’s SWPC has stated a need for real-time NM data (1-minute resolution with 5-minute latency) and additional NM monitoring sites to improve the spatial resolution of aviation forecasts. More NM sites are also needed to better understand the anisotropy (uneven distribution) of incoming cosmic ray particles globally, particularly during GLEs and other perturbed geomagnetic conditions, and how it may influence space weather impacts experienced around the planet.

    By collaboratively addressing these and other gaps in the neutron-detecting networks used for space weather and soil moisture monitoring, we can advance scientific understanding of critical environmental and planetary processes and better serve the needs of operational systems designed to foster safety and prosperity.

    References

    Baird, F. (2024), The potential use of hydrological neutron sensor networks for space weather monitoring, Ph.D. thesis, University of Surrey, Guildford, U.K., https://doi.org/10.15126/thesis.901065.

    Boteler, D. H. (2019), A 21st century view of the March 1989 magnetic storm, Space Weather, 17(10), 1,427–1,441, https://doi.org/10.1029/2019SW002278.

    Dimitrova-Petrova, K., et al. (2020), Opportunities and challenges in using catchment-scale storage estimates from cosmic ray neutron sensors for rainfall-runoff modelling, J. Hydrol., 586, 124878, https://doi.org/10.1016/j.jhydrol.2020.124878.

    Knipp, D. J., et al. (2016), The May 1967 great storm and radio disruption event: Extreme space weather and extraordinary responses, Space Weather, 14(9), 614–633, https://doi.org/10.1002/2016SW001423.

    Kodama, M., et al. (1979), An application of cosmic-ray neutron measurements to the determination of the snow-water equivalent, J. Hydrol., 41(1–2), 85–92, https://doi.org/10.1016/0022-1694(79)90107-0.

    Mishev, A. L., L. G. Kocharov, and I. G. Usoskin (2014), Analysis of the ground level enhancement on 17 May 2012 using data from the global neutron monitor network, J. Geophys. Res. Space Phys., 119(2), 670–679, https://doi.org/10.1002/2013JA019253.

    Mishev, A., S. Panovska, and I. Usoskin (2023), Assessment of the radiation risk at flight altitudes for an extreme solar particle storm of 774 AD, J. Space Weather Space Clim., 13, 22, https://doi.org/10.1051/swsc/2023020.

    Miyake, F., et al. (2012), A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan, Nature, 486, 240–242, https://doi.org/10.1038/nature11123.

    Montzka, C., et al. (2017), Validation of spaceborne and modelled surface soil moisture products with cosmic-ray neutron probes, Remote Sens., 9(2), 103, https://doi.org/10.3390/rs9020103.

    National Academies of Sciences, Engineering, and Medicine (2024), The Next Decade of Discovery in Solar and Space Physics: Exploring and Safeguarding Humanity’s Home in Space, Natl. Acad. Press, Washington, D.C., https://doi.org/10.17226/27938.

    Schrön, M., et al. (2021), Neutrons on rails: Transregional monitoring of soil moisture and snow water equivalent, Geophys. Res. Lett., 48(24), e2021GL093924, https://doi.org/10.1029/2021GL093924.

    Väisänen, P., I. Usoskin, and K. Mursula (2021), Seven decades of neutron monitors (1951–2019): Overview and evaluation of data sources, J. Geophys. Res. Space Phys., 126(5), e2020JA028941, https://doi.org/10.1029/2020JA028941.

    Zreda, M., et al. (2012), COSMOS: The Cosmic-ray Soil Moisture Observing System, Hydrol. Earth Syst. Sci., 16, 4,079–4,099, https://doi.org/10.5194/hess-16-4079-2012.

    Author Information

    Trenton Franz ([email protected]), School of Natural Resources, University of Nebraska–Lincoln; Darin Desilets, Hydroinnova LLC, Albuquerque, N.M.; Martin Schrön, Helmholtz Centre for Environmental Research UFZ, Leipzig, Germany; Fraser Baird, University of Surrey, Guildford, U.K.; and David McJannet, Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia

    Citation: Franz, T., D. Desilets, M. Schrön, F. Baird, and D. McJannet (2025), Two neutron-monitoring networks are better than one, Eos, 106, https://doi.org/10.1029/2025EO250212. Published on 6 June 2025.
    Text © 2025. The authors. CC BY-NC-ND 3.0
    Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.
  • An initial analysis of the 8 February 2025 Junlian rock avalanche, China

    The aftermath of the 8 February 2025 Junlian rock avalanche in Sichuan, China.

    A new paper in the journal Landslides has presented a review of a large landslide that killed 29 people in Sichuan Province.

    Image of a landslide partially covered with a transparent sand-colored overlay and the words “The Landslide Blog,” centered, in white

    On 8 February 2025, a large rock avalanche occurred in Junlian County in Sichuan Province, China. I wrote about this event, now known as the Junlian rock avalanche, at the time. With remarkable and commendable pace, Bo Zhao and colleagues have published an initial review of the event (Zhao et al. 2025) in the journal Landslides. Whilst the paper is behind a paywall, this link should allow readers to access the full text.

    The landslide is located at [27.99885, 104.60801]. The Google Earth image below shows the site in 2020 – the marker is on the source area of the Junlian rock avalanche:-

    Google Earth image of the site of the 8 February 2025 Junlian rock avalanche, China.
    Google Earth image of the site of the 8 February 2025 Junlian rock avalanche, China.

    The image below, published by Xinhua, shows the aftermath of the landslide:-

    The aftermath of the 8 February 2025 Junlian rock avalanche in Sichuan, China.
    The aftermath of the 8 February 2025 Junlian rock avalanche in Sichuan, China. Image by Xinhua.

    Zhao et al. (2025) have determined the key statistics for this landslide. The initial failure was 370,000 m3, increasing to 600,000 m3 through entrainment. The landslide had a runout distance of 1,180 metres and a vertical elevation change of 440 m, giving a landslide mobility index of 0.37. This is a typical value for a rock avalanche of this volume.

    Zhao et al. (2025) show that the initial failure was structurally controlled, which is no surprise. It occurred in a Triassic interbedded sandstone and mudstone formation. They estimate that the average velocity was 19.3 m/second.

    The authors consider in some detail the triggering event. The site experienced 10 days of low intensity rainfall prior to the failure. Zhao et al. (2025) suggest that this led to the build up of pore water pressure, initiating the failure. Total rainfall in the month proceeding the collapse was in the order of 85 mm. This rainfall seems somewhat unexceptional, suggesting to me that a progressive failure mechanism was in play.

    The Junlian rock avalanche killed 29 people and left two people injured. It is a fascinating example of a major failure with high consequences in a remote mountainous area. Anticipating such events remains a major challenge in landsldie research. Many thanks to the authors for providing such a rapid description of this event.

    Reference

    Zhao, B., Zhang, Q., Wang, L. et al. 2025. Preliminary analysis of failure characteristics of the 2025 Junlian rock avalanche, ChinaLandslides. https://doi.org/10.1007/s10346-025-02556-1.

    Text © 2023. The authors. CC BY-NC-ND 3.0
    Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.